
Machine learned interatomic potentials 

Gábor Csányi



A decade old promise. Where are we? 



A decade old promise. Where are we? 
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Molecular successes (of others, mostly)
QM9 data set 

(small organic molecules)

(Courtesy of O. A von Lilienfeld)

KRR models for custom molecular force fields 
(sGDML of Tkatchenko et al.)

ANI-CC model 
of Isayev, Roitberg and co. 

for arbitrary molecules  

2b-3b environment descriptors  
3-layer feed-forward ANN

Torsion: rotation  
around dihedral angle 

kernel  
models



Potentials as “function interpolators”
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Smooth overlap of atomic positions (SOAP)

SOAP kernel: K(R, R′�) ≡ K(ρ, ρ′�) = |p ⋅ p′�|ζ

Many other descriptors (ACSF of Behler and ANI, FCHL, MBTR etc.) are equivalent in the complete basis limit
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• Variant to describe entire structures, rather than atomic neighbourhoods:  
 
 
 
 
 
(Other ways to construct kernels for entire structures: De, Bartók, GC, Ceriotti PCCP 2016)

c̄nlm = ∑
i

c(i)
nlm average over all atoms, no cutoff

p̄nn′�l = ∑
m

c̄†
nlmc̄nlm or cutoff > periodic unit cell

∑ ( l1 l2 l3
m1 m2 m3) cn1l1m1

cn2l2m2
cn3l3m3

∑ ( l1 l2 l3 l4
m1 m2 m3 m4) cn1l1m1

cn2l2m2
cn3l3m3

cn4l4m4

⋮

kλ(ρ, ρ′�) = ∫ dR̂ Dλ(R̂) ∫ drρ(r)ρ′�(R̂r)
2

D : Wigner matrix



Completeness: can we reconstruct an atomic 
environment from the representation?



Completeness: can we reconstruct an atomic 
environment from the representation?

• Well known that unordered distances not enough 
to reconstruct a point set 
 
 
 
 
 



Completeness: can we reconstruct an atomic 
environment from the representation?

• Well known that unordered distances not enough 
to reconstruct a point set 
 
 
 
 
 

• Unordered lists of distances and angles are not 
enough either! 



Completeness: can we reconstruct an atomic 
environment from the representation?

• Well known that unordered distances not enough 
to reconstruct a point set 
 
 
 
 
 

• Unordered lists of distances and angles are not 
enough either! 



General carbon potential (2020)

C-C dimer Graphite layers



General carbon potential (2020)

C-C dimer Graphite layers



General carbon potential (2020)

C-C dimer Graphite layers

Previous 
models

Target ○ 
Model ✕

Sparse kernel model (SOAP kernel)  
~ 9000 basis functions 
~ 6000 oracle evaluations (~400k scalars) 
 > 106 speedup



Diamond-like Carbon (DLC) coatings

Razor blade

Hard disk drive

Hard wearing, biocompatible

Replacement hip joint



Incident ion 
20-100 eV

Speedup wrt. explicit electronic simulation: ~ 105  
would have taken 30,000 years









True extrapolation is still problem in 
high dimensional fits
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6. Multiscale descriptors: LODE (Grisafi, Ceriotti) 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- We have good descriptors for local atomic structure, kernel models and shallow feed-forward 
neural network regressors work well 

- Empirical force fields, polynomial fits and recent ML models in the same conceptual framework 

- Making good and efficient force fields is important "numerical engineering" problem

• Catching up with 50 years of research in quantum chemistry: long 
range electrostatic interactions and charge transfer needs universal 
ML solution

• Synergy between force field ideas and other molecular problems: 

- Generative models, unsupervised learning problems, large scale classifications 

- Effective Hamiltonians and parametrisation of other operators 

- Eigenfunctions (wave functions) rather than just eigenvalues

✔

?

??


